Tanta University

Production Engineering and Mechanical Design Department

Faculty of Engineering

Course Title: Industrial Organization

Date: Jan. 2022

Final exam

Course Code: MPD 4124

Allowed time: 3 hr.

No. of Pages: 2

Question One

a) A company is planning for the next year production plan. The demand for this year is summarized in **Table 1**. Considering the following data:

- i. Assume a starting inventory at the beginning of the year. Inventory can be modified according to conditions. All demands must be met and the same number of inventory must be at the end of the year.
- ii. Each worker can produce 1000 mobile per month on regular time. On overtime, a 25% of the regular production can be produced. Overtime can be used for only May, July and August.
- iii. Each worker is paid 1100\$ monthly on regular. Overtime is paid 200% of regular time. A maximum of 30% overtime can be used during a month.
- iv. It costs 750\$ to hire a worker, and 500\$ to fire a worker.
- v. For inventory evaluation, the cost of carry inventory is assumed to be 1 cent per product per month.

Table 1							
Jan.	Jan. Feb.		April				
175,000	150,000	160,000	200,000				
May	Jun.	Jul.	Aug.				
350,000	190,000	325,000	240,000				
Sep.	Oct.	Nov.	Dec.				
190,000	150,000	165,000	190,000				

The management has decided to consider three aggregate plans (*Level work force, Level work force plus overtime, and Hire/Fire strategy*). Evaluate the three plans and suggest the best one.

Question Two

- a) Consider the activities in the Table 2 (without resources).
 - i. Draw the precedence diagram
 - ii. Use ranked positional weight technique to design the assembly line with its workstations then compute the balance delay
 - iii. Change the cycle time to get the minimum balance delay for this assembly line.

Production Engineering and Mechanical Design Department

Faculty of Engineering

Course Title: Industrial Organization

Date: Jan. 2022

Final exam

Course Code: MPD 4124

Allowed time: 3 hr.

No. of Pages: 2

Question Three

a) What is meant by critical path? Why it is critical?

b) Consider a project with its activities and resources in Table 2.

i. Draw AON networks

ii. Get a **table** of the earliest start, earliest finish, latest start and latest finish time for all activities of the project.

iii. Determine the critical path.

iv. Draw a bar chart for the project

v. Develop a resource schedule according to the given data.

	Table 2 Resource requirements					nents		
Activity	Duration	Predecessor	or R1 R2 R3 R4 R5			R5	R6	
С	2	-	5	2	2	2	7	4
D	4	С	3	5	2	3	9	6
Е	10	С	2	4	4	2	3	1
F	20	Е	5	4	3	5	5	4
G	10	С	3	5	2	3	8	0
Н	5	F	4	1	4	9	2	5
	7	D	4	1	4	3	9	8
J	14	Н, І	5	5	4	0	9	1
К	1	С	3	2	4	3	4	2
L	10	К	1	5	4	6	7	3
M	3	L	3	3	2	4	5	1
N	13	M, J	3	2	2	8	3	4
0	20	N	2	2	2	2	4	8
Р	7	0	1	4	4	3	4	1
Q	2	Р	5	5	4	6	2	3
R	2	Q	3	2	3	4	7	8
S	7	Р	4	5	4	2	3	4
T	5	S	5	3	3	3	7	8
U	4	T, R, G	2	4	6	2	3	4
	Resource L	imits	7	10	10	16	18	13

With my best wishes

Prof. Ahmed ElKassas

Production Engineering and Mechanical Design Department

Faculty of Engineering

Course Title: Plant Layout Date: Jan. 2022 Final exam

Course Code: MPD 4125 Allowed time: 3 hr. No. of Pages: 1

Question 1

- (A) Mention a known mechanical machine or an assembly of at least ten parts and then construct a bill of materials, an assembly chart, and an operation process chart for it. Identify the components that are purchased and the ones that are prepared internally.
- (B) Mention with sketched the types of flow in facilities.
- (C) Differentiate between the product layout and the process layout.

Question 2

- (A) Part A is produced on machine 1 and then machine 2. One unit of Part A is assembled with three units of Part B, which is produced on machine 3, in assembly station 4. Machine 1 has a scrap factor of 20%, and machine 2 has a scrap factor of 10%. The assembly process has a scrap factor of 15%. Another part, Part C, is produced on machine 5 and has a scrap estimate of 25%. Part C and the subassembly comprison of Part A and Part B are assembled at assembly station 6 into the completed product. Each day, 15,000 units of the completed product are required to meet demand. Assuming that machine 3 and assembly station 6 have scrap factors of 30% each, what are the requirements for Parts A, B, and C in order to meet the daily demand for the completed product?
- (B) Components 1 and 2 have similar handling requirements. Moving two units of either component 1 or 2 is equivalent to moving one unit of component 3. The production volumes for components 1, 2, 3 are 30, 12, 7, respectively. Moreover, the routing sequences are A-C- B-D-E for 1, A-B-D-E for 2, and A-C-D-B-E for 3. Create a from—to chart.

Question 3

(A) A manufacturing facility consists of five departments, 1, 2, 3, 4 and 5. It produces four components having the manufacturing product routings and production volumes indicated below. Construct a relationship

Component	Production Routing	Units per Week	
1	1-2-3-4-5	10	
2	4-3-5	15	
3	2-3-5-1	30	
4	5-4-3-2-1	20	

chart using the following rules: "A" for 85–66 trips between departments, "E" for 65–46, "I" for 45–26, "O" for 25–6, and "U" for 5–0. Then, find closeness ranks and selection order.

(B) Flow and distance information for three facilities A, B, C and three locations 1, 2, 3 are as shown in the following table. Apply the two-opt and three-opt heuristic on this problem. Generate all corresponding solutions, calculate the objective function value for each of them.

From\to	А	В	С	From\to	1	2	3
А	0	2	8	1	0	8	10
В	2	0	4	2	8	0	4
С	8	4	0	3	10	4	0

(C) Consider the following locations with their corresponding locations and fixed and variable associated cost as shown in the following table. Find the best location using the center of gravity method and the break-even analysis.

А	(2.5, 4.5)	\$250,000	\$52
В	(3.5, 2.5)	\$350,000	\$48
С	(4.5, 4.5)	\$300,000	\$25
D	(5, 2.5)	\$400,000	\$25

Department: Production and Mechanical Design Total Marks: 85 Marks

CNC Machines (مقرر اختياري 3) CNC Machines

Date: Jan. 24th 2023 (First term)

Course Code: MPD4130

Allowed time: 3 hrs

Year: 4th No. of Pages: (2)

Remarks: (answer the following questions... assume any missing data... answers should be supported by sketches)

Problem number (1):

(15 Marks)

Choose the correct answer:

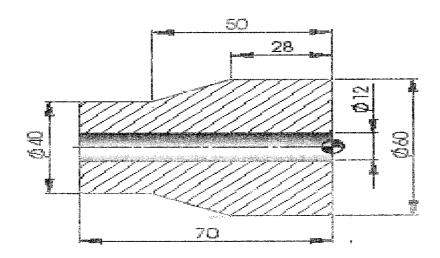
- 1. In NC machine tools one functions may be automatic:
- a) Changing of tools in the spindle
- b) Punched cards
- c) Magnetic tape
- 2. Program of instructions
- a) Closed loop
- b) 35 mm motion picture film
- c) Machine tool
- 5. Controller unit
- a) Limited logic beyond direct input
- b) inch-wide punched tape
- c) Open loop
- & Basic components of NC system
- a) Machine tool or other controlled process
- b) Starting and stopping of machine tool spindle
- c) Positioning the tool tip at desired location
- 5. Define of Numerical Control
- a) Punched cards
- b) A form of programmable automation in which process is controlled by numbers, letters and symbols
- c) Machine tool or other controlled process
- 8. The step must be accomplished, To utilize NC in manufacturing
- a) Limited programming capability
- b) Limited logic beyond direct input
- c) The part programmer plans the process
- 7. Two Ways to program for numerical control
- a) Manual Part Programming and Computer Assistant part programming
- b) Limited programming capability and Manual Part Programming
- c) Limited logic beyond direct input and the job is produced on an N. C
- 8. Extensions of NC
- a) Limited programming capability and Manual Part Programming.
- b) Manual Part Programming and Computer Assistant part programming
- c) Adaptive Numerical Control and Industrial Robots
- 9. To select ball screws
 - a) Required positional accuracy
 - b) Limited programming capability
 - c) Limited logic beyond direct input

10. Ball screws: drawbacks

- 2) Preloading can eliminate backlash
- b) More prone to damage during installation than conventional lead screws
- c) Minimal thermal effects

Problem number (2)

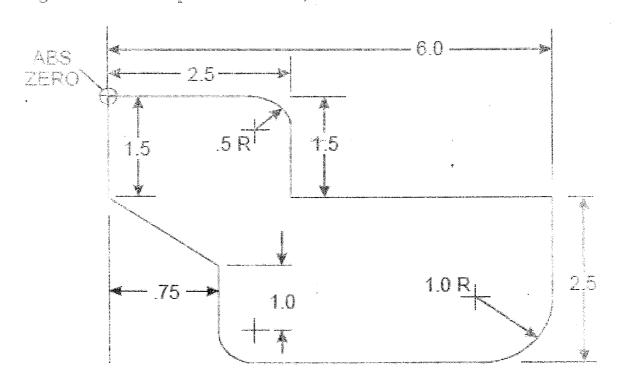
(20 Marks)


Write short notes about:

- a) Write short note about Numerical Control (NC)? (6 Marks)
- b) Ways to program for numerical control? (7 Marks)
- c) Comparison between milling CNC and Conventional Machine? (7 Marks)
- d) Explain CNC Components? (6 Marks)

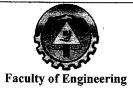
Problem number (3)

(20 Marks)


Write a program to turn a workpiece dimensions 60 mm diameter and 70 mm length to produce the product as shown below. To make a peck hole 12 diameter and length 70 mm length, assume speed and feed rate.

Problem number (4)

(30 Marks)


A raw material dimensions 6.0 inch X 4.0 inch and depth 1.0 inch. Write a program to produce a work piece with depth 0.5 inch as shown in Figure below, cutting conditions are speed 180m/min., and feed rate 0.15 mm/rev.

Production Engineering and Mechanical Design Department

Final Exam – First Term – Academic Year 2022/2023

	I IIIai Ditaili	I II St I OI III	rivadenne i car 2022/202
Tanta University			

Course Title: Metrology Year: 4TH Year Production Students Course Code: MPD4126 Date: 10 January 2023 Allowed Time: 3 Hrs. Total Marks: 90

تعليمات: (١) الامتحان مكون من سؤالين في أربع صفحات – (٢) أجب عن جميع الأسئلة مع افتراض أي بيانات ناقصة – (٣) دعم إجابتك بالرسم كلماً أمكن ذلك.

Question 1: 40 % 1.25 Marks = 50 Mark	K
---------------------------------------	---

)ues	stion 1: 40 × 1.25	Marks=50	Varkši		
2	بحيح الالكتروني (اللوقية	الجاينك في ورقة التبد	مجيحة (الأكار دقة) وطلل		می معلق وی (۱۱) آن نیسته روی (۱۲) کی اشته از طاقه کارگذی به اشتال الک
1-	Metrology deals w	ith the a	spects of measureme	ent.	
-	A- theoretical		_	D- A and B	-
2-	The true value of a	a measurand cai	nnot be determined b	ecause all m	easurements have
	A- traceability		C- repeatability		· ·
3-	The role ofusing a finite samp			about the tai	rget measurement system
	A- differentiation	•	C- trigonometry	D- statistics	
4-	The certification control included in the un-			he instrumen	ntal error that should be
	A- calibration	•	C- verification	D- inspection	on
5-	The expanded unc	ertainty is calcu	lated by multiplying	the combine	d standard uncertainty by
	A- 1	B- 2	C- 2.58	D- the cove	erage factor
6-	The process varial standard deviation		ion is usually approx	imated by a	distribution with a
		- triangular	C- normal	D- expone	ntial
7-	In acceptar		is accepted if the me	asurement re	esult lies in the specification
	•		C- relaxed	D- obligate	ory
8-,			ity of taking a wrong		
	A- increase	B- decrease	C- eliminate	D- balance	e
9-	The influence of m metrology.		the transparency of e	economic trai	nsactions is concerned by
	A- scientific	B- industrial	C- legal	D- comme	ercial
10-				value can nev	er be known exactly.
	A- Accuracy	B- Precision	C- Resolution	1	D- Sensitivity
11-	The sample mean i	is a common me	asure of		
	A- variation	B- spread	C- central ter	ndency	D- skewness
			Page 1 of 4	·	

12-	Noise generated in A-random disturban	ces B- systematic	devices can be con errors C- uncert		a source of
13-	The level of confider A- accurate	nce is the probability B- recorded		ralue lies in a	the confidence interval.
14-	The goal of any contact A- detect	formance test plan is B- remove	to bad pro	oducts. D- pre	vent
15-	By increasing the property A- increase	ocess capability inde B- decrease	$x C_p$, the fraction C- remain consta		D- disappear
16-	when the measurem	f simple acceptance is ent result lies near th B- center limits	e		epting a bad product
17-	If the guard band m	ultiplier h has a nega	tive value, this m	eans that th	e decision rule includes
\$	A- simple acceptance D- stringent acceptance		ceptance C-	conditional a	acceptance
18-	Today, the kilogram A- Planck constant D- speed of light in v	B- Avogadro acuum	•	 - Boltzmann	constant
19-	The least significant instrument. A- resolution	digit in a digital read B- precision	lout represents the		the measuring uncertainty
20-	As per ISO 1:2016, a A- 15 °C	the dimensional calib B- 20 °C	rations should be C- 25 °C	performed D- 30	
21-		olerance zone is 0.2 m	m and $\sigma_p = 0.02$ r	nm, then th	e process capability index
	<i>C_p</i> equals A- 1.67	B- 2.5	C- 5		D- 10
22-		e and rejection 5:1 de of the specification zo		es the expai	nded uncertainty to be no
	A- 0.01	B- 0.02	C-0.1		D- 0.2
23-	If $T_U = 25.05 \text{ mm}$, $T_U = 25.05 \text{ mm}$	L=24.95 mm, and $g=$	+ 0.015 mm; then	the width	of the acceptance zone is
	A- 0.05 mm	B- 0.06 mm	C- 0.07 mm	D- 0.0	8 mm
24-	Derived units are A- sum	of powers of the B- difference	e base units. C- product	D- A or I	3
25-	Random measurement A- constant	ent error is B- predictable	C- constant or pr	edictable	D- unpredictable
	21 Constant		age 2 of 4		D- unpredictable

26	- In Type A evaluation observations.	on method, the uncert	ainty is quantified sta	tistically from
	A- repeated	B- dependent	C- predicted	D- unpredicted
27	- In evaluatio	n method, the uncerta	ninty is quantified by	scientific judgment.
	A- Type A	B- Type B	C- Type AB	D- Type C
. 28	- Large values of mea		index C_m mean low m	easurement relative to
			oility C- und	certainty D- sensitivity
29	- Stringent acceptance	e increases confidences	e in product quality b	y the probability of
		B- increasing		D- optimizing
30	tolerance limits by g	$g = \dots \times U$. ", $\underline{\mathcal{E}}$	جرزل في حبانه الصفحه رقم	
	A- 0.42	B- 0.52	_C- 0.64	D- 0.82
31		librate gauge blocks. B- Interferom	eter C- Inter-optin	nizer D- Laser meter
32		observed and recorde B- Reproducible v		urement. value D- Reference value
33	- The resolution unco	ertainty of a measurin	ig instrument is consi	dered as a uncertainty
	A- Type A	B- Type B	C- Type AB	D- Type C
34	- In the case of symm	etric two-sided guard	bands,	
	A- $g_L > g_U, g_U = g$	$\mathbf{B-} \ g_L < g_U, g_L = g$	$C-g_L \neq g_U, g_L = g$	$D- g_L = g_U = g$
35	- Typically, the supp	lier who requests	acceptance in case	e of conflict with the customer.
	A- stringent	B- relaxed	C- conditional	D- simple
. 36	standards tv	pically used for the re	ealization of the units	of measurement
	A- Primary	B- Secondary		D- Industrial
37		. is obtained through B- repeatability		f calibrations. D- referability
		old in reduced price in nce B- relaxed acc		e lies in the zone. exect rejection
39		and decision rule is us erance limit B- onl trial		
		Pa	ge 3 of 4	

40- If the temperature of a laboratory varies	between 17 °C to 27°C	this means that the measure
dimensions have a bias انحياز.		

A- positive

B- negative

C-zero

D- balanced

Question 2: [40 Marks]

A Φ 30 $^{+0.75}_{-0.00}$ mm precision shaft is manufactured on a CNC-lathe machine at an industrial workshop. At the inspection stage, the final turned diameter was measured at the shop floor using a digital caliper to check its compliance with the specified tolerance. The measurement procedure was repeated 10 times, and the readings were as listed below.

i	1	2	3	4	5	6	7	8	9	10
Φ (mm)	29.96	29.95	29.97	29.93	29.97	29.96	29.94	29.95	29.97	29.96

The following data about the measurement process is known:

- The caliper's resolution is 0.01 mm
- The MPE of the caliper is less than 15 μm over its full range when measuring at 20 °C.
- The caliper CTE is in the range $(10 \pm 1) \times 10^{-6} / {}^{\circ}\text{C}$
- The workpiece CTE is within the range: 7×10^{-6} /°C to 13×10^{-6} /°C
- The workshop temperature is within the range: 13 °C to 27 °C
- The temperature difference between the caliper and the workpiece is within ± 0.5 °C.
- Workpiece form error: Negligible
- No correction is applied to the measurement result.

1) Estimate:

- The measurement result. [4 Marks]
- Type A uncertainty. [4 Marks]
- The resolution uncertainty of the caliper. [4 Marks]
- The calibration uncertainty of the caliper. [4 Marks]
- The uncertainty due to the differential thermal expansion. [4 Marks]
- The uncertainty due to the temperature difference between the caliper and the workpiece. [4 Marks]
- The combined standard uncertainty. [4 Marks]
- The expanded uncertainty. [4 Marks]
- 2) Check if the shaft is accepted based on a 4:1 simple acceptance and rejection decision rule. sketch your answer. [3 Marks]
- 3) Write down the traceability demonstration report of the shaft measurement results as per ASME B89.7.5. [5 Marks]

Page 4 of 4

انتهت الأس	Conformance Probability, P_C	Guard Band Multiplier, h	٠.
مع أطيب التمنيات بالتوفيق والنع	0.80	0.42	
	0.85	0.52	
	0.90	0.64	
	0.95	0.82	
	0.99	1.16	
	0.999	1.55	

جاح د.م/ أحمد حوام واللجنة

Department: Production Engineering & Mechanical Design Total marks: 75 Marks

Faculty of Engineering

Course Title: Composite Materials

Course Code: MPD 4128 Year: 4th Year Production

Final Exam

Date: 15-1-2023 Allowed time: 3 hrs. No. of pages: 2

Q1.

(12 Marks)

- 1. Briefly explain the different classifications of the composite materials?
- 2. What are the advantages and limitations of composite materials?
- 3. List the different properties of matrix and the reinforcement in the composite materials?
- 4. Define the metal matrix composites and give the distinctive features, properties, and applications of it?
- 5. Cite the properties that may be improved by particles reinforcements in composite materials?
- 6. What is the dispersion strengthened composites? Show your answer with example?

<u>Q2</u>.

16 Mark)

- 1. Compare between aligned fiber composites and randomly oriented fiber composites regarding the mechanical properties?
- 2. Draw the curve presents the relation between the fibers orientation and the tensile strength?
- 3. Define the following Lamina and a laminate?
- 4. Explain the difference between homopolymer and copolymers?
- 5. List the different types of the copolymers?
- 6. Classify polymers based on both the mode of formation and the molecular structure? Give example for every type?
- 7. Define polymer crystallinity? What are the factors affect the degree of crystallinity?
- 8. Cite three characters of thermoset polymers?

<u>Q3.</u>

(35 Marks)

- 1. A continuous and aligned glass fiber-reinforced composite consists of 40 vol% of glass fibers having a modulus of elasticity of 69 GPa (psi) and 60 vol% of a polyester resin that, when hardened, displays a modulus of 3.4 GPa (psi).
 - a) Compute the modulus of elasticity of this composite in the longitudinal direction.
 - b) If the cross-sectional area is 250 mm² (0.4 in.²) and a stress of 50 MPa (7250 psi) is applied in this longitudinal direction, compute the magnitude of the load carried by each of the fiber and matrix phases.
 - c) Determine the strain that is sustained by each phase when the stress in part (b) is applied.
- 2. What are the advantages and applications of carbon fibers?
- 3. Draw schematic diagram showing the different manufacturing processes of PMCs using thermoset and thermoplastic resins?
- 4. Explain briefly the hand layout manufacturing process of PMCs? and list its advantages and limitations?
- 5. Compare between hand lay-up and spry-up layout manufacturing process of PMCs?

Q4.

(12 Marks)

- 1. Briefly describe pultrusion and filament winding, cite the advantages and disadvantages of each.
- 2. List the advantages and limitations of vacuum bagging process.
- 3. Compare between SMC, TMC and BMC
- 4. Why is necessary to thicken the SMC paste?
- 5. List the two thickening mechanisms in SMCs manufacturing process.
- 6. List the three manufacturing processes of CMCs.

With my best wishes

Dr. Eng. Saad .M. Ebied

(2/2)

(1/2)